Representation of shape and space when objects undergo transformations
Filipp Schmidt, Patrick Spröte, \& Roland W. Fleming DFG Department of Psychology, Justus-Liebig-University Giessen, Germany

Introduction

Shape is the most important visual feature for object recognition.

However, object shape is subject to manifold transformations, from simple rigid changes like rotation or translation to complex nonrigid transformations like twisting, bending or biological growth.
These transformations may be grouped into two broad classes:

Transformations of the physical objects themselves (due to movements and

Transformations of the object images on the retina (due to movements of the

Perception of stable objects in space and time (object constancy; Cassirer, 1944). has aiven an object its present form (causal history Leyton, 1989) (causa

Research Questions

We measure the effects of two rigid transformations (scaling, rotation) on representations of shape and space to test for object constancy, causal history, and transformation of space.

Specifically, we ask to what extent ...participants can infer (causal history) and follow the transformation that produced one shape from the other (accuracy).
...different levels of transformation influence this accuracy.
...contour influences this accuracy.
(surprisal)
infuences this accuracy.
..transformations extend to the space
around shapes (egocentric vs. objectbased reference frame).

Funding sources
German Research Foundation - CRC/Transregio 135 Cardinal mechanisms of perception

Participants use the cursor to move the green dot to the position that they perceive as corresponding to the position of the red
dot (no time constraints).

Stimuli (Cohen \& Singh, 2007; 9.0 to 10.6°):

Experiment 1
Testing shape contours - $n=14 \cdot 10$ equi-spaced dots $\cdot 12$
levels of transformation \cdot constrained to shape contours

rotation	scaling \boldsymbol{C}	combined \boldsymbol{C}
20°	0.6	$20^{\circ} / 0.6$
40°	0.8	$20^{\circ} / 1.4$
80°	1.2	$160 \% .6$
160°	1.4	$160^{\circ} \% .4$

Dependent variable: Euclidean distance as a percentage of shape perimeter

Experiment 2

Testing shape and space

- $\mathrm{n}=14 \cdot 24$ dots \cdot three levels of transformation - various positions inside and outside of each shape ('compare left to right side of screen')

rotation C	scaling x	combined C
80°	0.6	80\% 0.6

Dependent variable: Euclidean distance

Experiment 2 - Results for Shape and Space

Conclusions

Shape representations are remarkably robust against rigid transformations. Still, they are modulated by the (1) type and level of transformation (Moran \& Leiser, 2002), (2) contour saliency, (3) and the distance to the contour (Phillips et al., 1997)

- Space representation is transformed in line with the shape, so participants infer causal history and establish object-centered reference frames. The experiments are a starting point for investigations into more complex transformations resulting from changes of the physical objects themselves.

